

20 December 2023

ASX Announcement

Mick Well Exceeds 20km of REE Mineralisation


New high grade REE discoveries significantly increase strike length of mineralisation and scale of Mick Well carbonatite pipe target area.

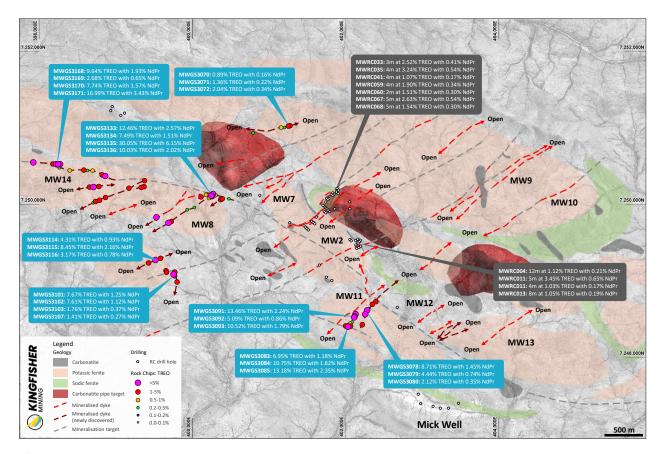
Highlights

- Mick Well mineralisation strike length now exceeds 20km with further high grade REEs discovered at the new MW14 target.
- Substantial regional scale carbonatite intrusion centre is now recognised to extend over an area of 10km by 4km.
- Further strongly mineralised ferrocarbonatite dykes discovered on several new orientations, with outstanding results up to 30.1% Total Rare Earth Oxides (TREO) and 6.2% Nd₂O₃ + Pr₆O₁₁ (MWGS3135).
- Significant potential for discovery of additional mineralisation recognised, with 2024 focus to be drill testing of priority surface targets and carbonatite pipe targets.

Kingfisher Mining Limited (ASX:KFM) ("Kingfisher" or the "Company") is pleased to announce a substantial increase in the scale of the Mick Well carbonatite intrusion centre and the discovery of further high grade rare earth elements mineralisation.

Kingfisher's Executive Director and CEO James Farrell commented: "Mick Well is now confirmed as a significant regional scale carbonatite centre and continues to grow on the back of our successful targeting strategy which is continuing to deliver further high grade REE discoveries.

The latest discoveries have significantly increased our understanding of the scale of the Mick Well Prospect. The carbonatite mineralisation intrusion centre is now recognised to extend over a strike length of 10km along the Chalba Shear Zone, with three large carbonatite pipe targets at its centre and more than 20km of high grade dyke and vein mineralisation extending away from the pipes.


The latest results bring to a close our 2023 field season; another very active and successful year for the Company where we have seen substantial increases to the mineralisation at Mick Well, the discovery of additional carbonatite intrusive centres and the delineation of an exciting new target area at LK1, 30km west of Mick Well. In addition to our ongoing REE discovery, we have also identified exciting lithium pegmatite targets at Chalby Chalby, with more than 13km of strike of pegmatites mapped and rock chip results up to 0.6% Li₂O.

Our planning for next year is already well advanced. We will commence the 2024 field season with drilling programs to test the exciting targets we delineated in 2023.

I'd like to extend a warm thank you to our team and to our shareholders, I'm already looking forward to 2024 which will no doubt be a very exciting year for KFM".

Mick Well REE Discoveries

Mapping along the structures radiating from the recently identified carbonatite pipe targets (see ASX:KFM 23 October 2023) has led to the discovery of high grade REE mineralisation at MW14 (Figure 1). The mapping

Figure 1: Mick Well mineralisation and rock chip results from the newly discovered MW14 and extensions to MW8 and MW11 mineralisation (blue boxes). Drill results are shown in grey boxes (see ASX:KFM 7 February 2023, 5 July 2022 and 24 March 2022). Results are stated as Total Rare Earth Oxides (TREO%) and total Nd₂O₃ + Pr₆O₁₁ (%) content.

and sampling has also identified significant high grade extensions to MW8 and the recently discovered MW11 (see ASX:KFM 23 November 2023). Significantly, the success of the Company's refined targeting criteria has also resulted in the cumulative length of the high grade mineralisation at Mick Well more than doubling in just three months, now exceeding a strike length of 20km.

The latest results have also confirmed richly mineralised ferrocarbonatites on new orientations, with high grade north-striking and west-northwest striking mineralisation now recognised. The discovery of west-northwest striking ferrocarbonatite dykes has significantly increased the potential mineral endowment of the project, with considerable additional upside highlighted from the multiple parallel and very long strike lengths of the west-northwest mineralised structures that cross the area. The west-northwest trending mineralisation is also in addition to the well-established northeast-trending mineralisation of MW2 as well as the yet to be drilled MW7 to MW13 targets.

New exceptional grade results are shown below, with full results include in Annexure 1.

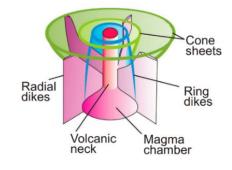
- 30.05% TREO with 6.15% Nd₂O₃ + Pr₆O₁₁ (MWGS3135)
- 25.66% TREO with 5.47% Nd₂O₃ + Pr₆O₁₁ (MWGS3173)
- 21.39% TREO with 2.82% Nd₂O₃ + Pr₆O₁₁ (MWGS3121)
- 19.11% TREO with 4.05% Nd₂O₃ + Pr₆O₁₁ (MWGS3177)
- 16.99% TREO with 3.43% Nd₂O₃ + Pr₆O₁₁ (MWGS3171)
- 15.93% TREO with 3.18% Nd₂O₃ + Pr₆O₁₁ (MWGS3175)
- 14.55% TREO with 2.98% Nd₂O₃ + Pr₆O₁₁ (MWGS3137)
- 13.46% TREO with 2.24% Nd₂O₃ + Pr₆O₁₁ (MWGS3091)
- 13.18% TREO with 2.35% Nd₂O₃ + Pr₆O₁₁ (MWGS3085)
- 12.46% TREO with 2.57% Nd₂O₃ + Pr₆O₁₁ (MWGS3133)
- 11.61% TREO with 2.26% Nd₂O₃ + Pr₆O₁₁ (MWGS3138)
- 11.58% TREO with 1.85% Nd₂O₃ + Pr₆O₁₁ (MWGS3117)
- 11.05% TREO with 1.84% Nd₂O₃ + Pr₆O₁₁ (MWGS3119)
- 10.75% TREO with 1.82% Nd₂O₃ + Pr₆O₁₁ (MWGS3084)

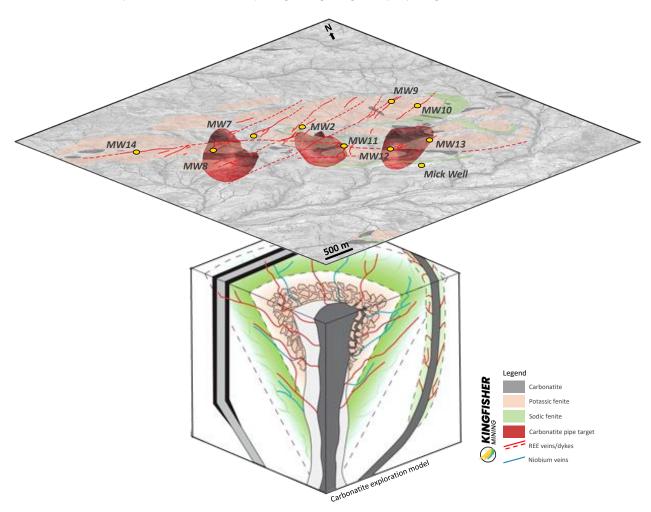
10.87% TREO with 1.66% Nd₂O₃ + Pr₆O₁₁ (MWGS3118)

- 10.52% TREO with 1.79% Nd₂O₃ + Pr₆O₁₁ (MWGS3093)
- 10.03% TREO with 2.02% Nd₂O₃ + Pr₆O₁₁ (MWGS3136)

The Carbonatite Exploration Model

The carbonatite intrusion model has a central carbonatite pipe which is comprised of multiple phases of carbonatite intrusion that is surrounded by ring dykes which form around and radial dykes which radiate out from the central intrusion (Figure 2). The carbonatite exploration model envisages alteration of the host country rock into which the carbonatites intrude, with development of sodic (Na) and potassic (K) fenites around the intrusions which often hosts the REE mineralisation (Figure 3).



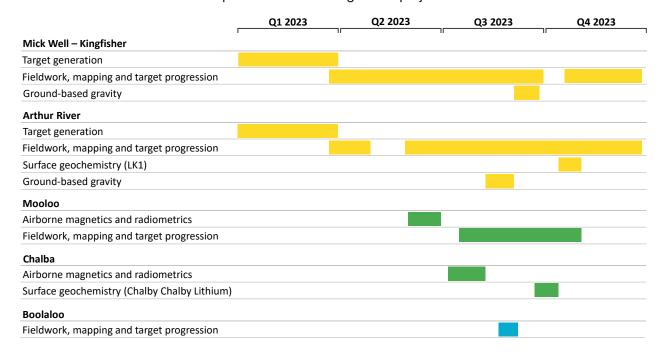

Figure 2: 3D schematic of a carbonatite intrusion

Each part of the carbonatite system has characteristics which can be detected by modern exploration techniques, for example:

- Thorium associated with the REE mineralisation is apparent in the radiometrics.
- Potassium fenites, the alteration which forms around carbonatites intrusions, is also apparent in the radiometrics.
- Ferrocarbonatites have high iron content and can appear as magnetic highs in the geophysics.
- Carbonatites typically have high density and can be distinguished from the country rocks by gravity surveys.
- ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) remote sensing can
 detect various minerals and elements, including carbonates, ferrous and ferric iron as well as
 alumina and magnesium and can assist with of carbonatites and associated alteration.

The combination of these geophysical responses to the carbonatite geology provide a very powerful combination of exploration tools for early stage targeting and project generation.

Figure 3: Mick Well geology and the carbonatite associated rare earth element mineralisation model*. The model shows carbonatite intrusions and dykes, areas of potassic fenitisation as well as the late stage REE-bearing dykes and veins – which have been discovered by the Company.


Gascoyne Exploration Program

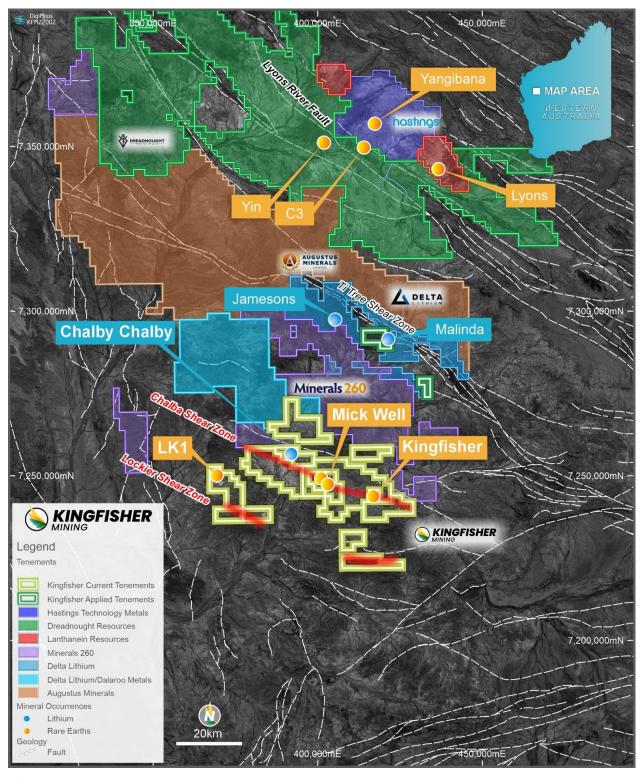
Kingfisher is undertaking high impact and value building exploration programs targeting large-scale carbonatite targets along its 54km Chalba target corridor and its 30km long Lockier target corridor. The programs test high priority carbonatite targets across the Company's belt-scale tenement holding, building upon the significant carbonatite discoveries, which confirmed the presence of high grade REE mineralisation along the Chalba target corridor. In addition, the Company is undertaking exploration for lithium associated with various pegmatite outcrops within its tenements at Chalby Chalby.

The exploration work completed for the 2023 field season included:

- Significant on-ground mapping and sampling targeting interpreted "Mt Weld style" carbonatite plugs as well as dyke mineralisation and alteration which can be used to vector towards the large-scale source of intrusions. The results will be used for drill planning of the high priority taraets.
- Ground-based gravity at LK1 and Mick Well. The gravity surveys are used to model higher density rocks (potential mineralised carbonatites) at depth.
- Surface geochemical survey over the large-scale high priority LK1 target at Arthur River, where mapping is restricted by deep weathering associated with the highly altered rocks and cover.
- Surface geochemistry at Chalby Chalby to define additional lithium-bearing pegmatite drill targets.
- Further airborne geophysics to incorporate Mooloo and North Chalba Projects into our early-stage target generation. Magnetics and radiometrics are highly effective for identifying carbonatite mineralisation.

The timeline for the activities completed in 2023 for Kingfisher's projects is shown below.

About the Kingfisher's Gascoyne Projects


Kingfisher's Mick Well REE Project and Chalby Chalby Lithium Project are located in the Gascoyne region of Western Australia where the Company holds exploration licences covering 969km². The tenure is prospective for carbonatite REE mineralisation similar to Hastings Technology Metals' world-class Yangibana Deposit which includes 29.93Mt at 0.93% TREO# as well as the recent Yin and C3 discoveries of Dreadnought Resources which include mineral resources of 40.82Mt at 1.03% TREO^ (Figure 4). The Company's Gascoyne tenure is also prospective for lithium-bearing Thirty Three Suite Pegmatites which hosts Delta Lithium's Yinnetharra Project and has returned drill results of 33m at 1.9% Li₂O* from Delta's Malinda Prospect and rock chips results of 4.2% Li₂O+ from Delta's Jamesons Prospect.

Kingfisher recently made discoveries of hard rock and clay rare earth elements mineralisation at Mick Well. Both styles of mineralisation are associated with carbonatites that intruded along a crustal-scale structural corridor, the Chalba Shear, which extends over a strike length of 54km within the Company's tenure. The Company has also identified a second structural corridor along the Lockier Shear which extends for 18km across the Company's Mooloo Project and 12km across the Arthur River Project.

Drilling at the MW2 Prospect has intersected five parallel ferrocarbonatite lodes and associated monazite mineralisation within a 300m wide zone and has returned high-grade REE results with 5m at 2.63% TREO with 0.54% Nd₂O₃ + Pr₆O₁₁, 4m at 3.24% TREO with 0.54% Nd₂O₃ + Pr₆O₁₁, 5m at 1.54% TREO with 0.30% Nd₂O₃ + Pr₆O₁₁, 4m at 1.90% TREO with 0.34% Nd₂O₃ + Pr₆O₁₁ and 3m at 2.52% TREO with 0.41% Nd₂O₃ + Pr₆O₁₁. The results from the ferrocarbonatite mineralisation is 500m northwest of Kingfisher's breakthrough REE discovery where maiden drilling returned 5m at 3.45% TREO with 0.65% Nd₂O₃ + Pr₆O₁₁ as well as 12m at 1.12% TREO with 0.21% Nd₂O₃ + Pr₆O₁₁ from a separate mineralised lode.

Kingfisher is also advancing its Chalby Chalby Lithium Project with mapping and sampling at Chalby Chalby delineating an area of 3.3km by 3km that includes multiple stacked pegmatites with a cumulative strike length of over 13km and with surface sample results up to 0.61% Li₂O.

Figure 4: Location of the Mick Well and LKI REE Projects and the Chalby Chalby Lithium Project in the Gascoyne Mineral Field. The location of the Yangibana REE Deposit, Yin REE and C3 Deposits which are located 100km north of Kingfisher's projects as well as the Malinda Lithium Deposit which is located 45km north of Kingfisher's projects are also shown.

This announcement has been authorised by the Board of Directors of the Company.

Ends

For further information, please contact:

Kingfisher Mining Limited

James Farrell, Executive Director Ph: +61 (08) 9481 0389 E: info@kingfishermining.com.au

Media & Investor Enquiries

Peter Taylor, NWR Communications Ph: +61 412 036 231

E: peter@nwrcommunications.com.au

About Kingfisher Mining Limited

Kingfisher Mining Limited (ASX:KFM) is a mineral exploration company committed to increasing value for shareholders through the acquisition, exploration and development of mineral resource projects throughout Western Australia. The Company's tenements and tenement applications cover 1,676km² in the underexplored Gascoyne Mineral Fields.

The Company has made a number of breakthrough high grade rare earth elements discoveries in the Gascoyne region where it holds a target strike lengths of more than 54km along the Chalba mineralised corridor and more than 30km along the Lockier mineralised corridor.

To learn more please visit: www.kingfishermining.com.au

Previous ASX Announcements

ASX:KFM: High Grade Discoveries Further Expand REE Carbonatites at Mick Well 23 November 2023.

ASX:KFM: Significant Additional Carbonatites and REE Mineralisation Identified at Mick Well 14 November 2023.

ASX:KFM: Broad Lithium Anomalies Identified from Chalby Chalby Soil Geochemistry Survey 26 October 2023.

ASX:KFM: Gravity Survey Confirms Carbonatite Pipe Targets at Mick Well 23 October 2023.

ASX:KFM: Further High Grade REE Mineralisation Discovered at Mick Well 3 October 2023.

ASX:KFM: Multiple Stacked Lithium-Bearing Pegmatites Mapped at Chalby Chalby 11 September 2023.

ASX:KFM: Lithium-Bearing Pegmatites Confirmed at Highly Prospective Gascoyne Tenure 7 August 2023.

ASX:KFM: Carbonatite Intrusions Confirmed at Large-Scale Chalba Targets 10 July 2023.

ASX:KFM: Significant Exploration Program Targets Large-Scale Carbonatites 4 April 2023.

ASX:KFM: High Grade Drilling Results Confirm New MW2 REE Discovery 7 February 2023.

ASX:KFM: MW2 and MW7 Continue to Expand on Latest Surface Sample Results 23 January 2023.

ASX:KFM: Assays from MW7 Confirm Another High Grade REE Discovery 29 November 2022.

ASX:KFM: New REE Discoveries along Kingfisher's 54km Target Corridor - MW7 and MW8 24 October 2022.

ASX:KFM: Further Exceptional REE Results Extends MW2 Strike Length to 3km 4 October 2022.

ASX:KFM: 40% REE Returned from Mick Well 30 August 2022.

ASX:KFM: Latest Drilling Returns High Grade REEs with 5m at 3.45% TREO, including 3m at 5.21% TREO 5 July 2022.

ASX:KFM: Surface Assays up to 21% TREO Define a Further 800m of Outcropping Mineralisation 20 June 2022.

ASX:KFM: High Grade Rare Earths Returned from Discovery Drill Hole: 4m at 1.84% TREO, including 1m at 3.87% TREO 24 March 2022.

ASX:KFM: Significant Rare Earths Discovery: 12m at 1.12% TREO 10 January 2022.

- ^ ASX Announcement '40% Increase in Resource Tonnage at Yin Mangaroon (100%)'. Dreadnought Resources Limited (ASX:DRE), 5 July 2023.
- # ASX Announcement 'Large, High Confidence Yin Ironstone Resource Mangaroon (100%)'. Dreadnought Resources Limited (ASX:DRE), 30 November 2023.
- * ASX Announcement 'Stunning new drilling results from Yinnetharra'. Delta Lithium Limited (ASX:DLI), 23 June 2023.
- * ASX Announcement 'Yinnetharra Lithium Project Continues to Deliver'. Red Dirt Metals Limited (ASX:RDT), 14 April 2023.

Technical Exploration Papers

- ⁺ Simandl, G.J. and Paradis, S. 2018. Carbonatites: related ore deposits, resources, footprint, and exploration methods, Applied Earth Science, 127:4, 123-152
- *Elliott, H.A.L., Wall, F., Chakhmouradian, A.R., P.R.Siegfried, Dahlgrend, S., Weatherley, S., Finch, A.A., Marks, M.A.W., Dowman, E. and Deady, F. 2018. Fenites associated with carbonatite complexes: A review. Ore Geology Reviews, Volume 93, February 2018, Pages 38–59.

Total Rare Earth Oxide Calculation

Total Rare Earths Oxides (TREO) is the sum of the oxides of the light rare earth elements lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and samarium (Sm) and the heavy rare earth elements europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), and yttrium (Y).

Forward-Looking Statements

This announcement may contain forward-looking statements which involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions, and estimates should change or to reflect other future developments.

Competent Persons Statements

The information in this report that relates to Exploration Results is based on information compiled by Mr James Farrell, a geologist and Executive Director / CEO employed by Kingfisher Mining Limited. Mr Farrell is a Member of the Australian Institute of Geoscientists and has sufficient experience that is relevant to this style of mineralisation and type of deposit under consideration and to the activity that is being reported on to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Farrell consents to the inclusion in the report of the matters in the form and context in which it appears.

Annexure 1: Rock Chip Sample Information

Sample ID	Easting	Northing	CeO ₂	Dy₂O₃	Er ₂ O ₃	Eu₂O₃	Gd ₂ O₃	Ho₂O₃	La ₂ O ₃	Lu₂O₃	Nd ₂ O ₃	Pr ₆ O ₁₁	Sm₂O₃	Tb ₂ O ₃	Tm₂O₃	Y ₂ O ₃	Yb ₂ O ₃	TREO
MWGS3068	401167	7251009	4201	14.9	4.8	20.4	39.4	2.2	2642	0.57	1008	358	95	3.57	0.69	64	3.53	8458
MWGS3069	401199	7251008	1145	21.8	7.1	15.5	36.5	3.2	613	0.68	390	115	57	4.37	0.80	86	5.12	2501
MWGS3070	401228	7251021	4189	34.5	10.3	30.6	79.4	4.9	2644	0.80	1214	402	142	8.17	1.14	138	6.04	8907
MWGS3071	401230	7251021	6734	27.2	10.1	25.1	61.9	4.2	4233	0.91	1610	606	135	6.10	1.26	133	7.74	13596
MWGS3072	401236	7251020	10211	32.0	11.4	37.2	83.2	4.6	6335	1.02	2452	902	200	7.71	1.37	146	7.52	20432
MWGS3073	402288	7248615	24036	270.3	97.1	176.7	462.8	41.8	14352	7.39	6881	2235	809	55.48	11.65	1200	62.40	50699
MWGS3074	402287	7248620	398	50.6	22.4	14.1	50.1	8.8	194	1.93	183	46	47	8.75	2.86	253	15.60	1295
MWGS3075	402293	7248624	22896	143.2	48.0	141.2	320.9	21.2	14246	4.32	6444	2155	672	32.92	5.82	632	32.34	47794
MWGS3076	402293	7248626	20147	135.0	50.1	123.1	269.7	21.1	12443	5.00	5513	1851	566	29.47	6.51	632	38.03	41831
MWGS3077	402305	7248640	762	20.0	9.1	10.2	26.0	3.6	437	0.91	250	75	36	3.57	1.26	107	7.52	1749
MWGS3078	402257	7248560	42257	146.0	35.3	182.3	410.3	18.6	28069	2.16	10750	3737	953	37.87	3.54	509	17.08	87128
MWGS3079	402255	7248554	21538	80.6	21.0	100.6	213.1	10.2	14242	1.59	5486	1907	495	20.26	2.28	284	12.41	44414
MWGS3080	402215	7248424	10443	28.7	6.7	50.0	95.1	3.6	6736	0.45	2623	901	234	7.94	0.69	95	3.87	21229
MWGS3081	402216	7248428	14576	78.0	19.8	75.6	197.7	10.4	9574	1.02	3724	1287	367	19.91	1.94	297	9.45	30239
MWGS3082	402209	7248417	368	7.9	3.2	3.9	9.9	1.3	222	0.34	104	33	14	1.50	0.34	33	2.73	806
MWGS3083	402034	7248398	33952	134.4	41.2	141.7	352.5	18.6	21667	3.41	8725	3041	832	34.07	4.80	512	25.39	69485
MWGS3084	402033	7248399	52396	220.9	62.7	226.0	587.8	30.0	33517	4.66	13549	4674	1315	56.63	7.20	797	38.15	107481
MWGS3085	402033	7248398	63174	282.2	51.8	425.4	929.4	31.3	40557	2.62	17710	5834	1882	81.49	4.45	840	20.95	131826
MWGS3086	402023	7248402	22603	158.8	53.9	118.5	308.9	24.2	14464	3.87	6098	2051	612	34.76	6.05	687	32.45	47257
MWGS3087	402046	7248406	13106	122.2	37.7	97.3	236.7	17.8	8163	2.50	3734	1217	421	26.70	4.11	493	20.95	27699
MWGS3088	402045	7248410	2300	39.4	14.5	21.5	59.9	6.4	1373	1.14	673	210	88	7.83	1.60	178	7.86	4982
MWGS3089	402066	7248437	2640	14.5	5.3	13.7	33.8	2.3	1520	0.45	713	241	71	3.22	0.69	65	3.64	5328
MWGS3090	402081	7248456	1909	19.7	7.8	12.9	31.0	3.2	1197	0.68	524	176	56	3.80	1.03	84	6.38	4033
MWGS3091	402100	7248510	66840	69.2	12.6	202.3	365.0	7.6	43252	0.68	16562	5850	1231	24.17	1.03	194	5.47	134616
MWGS3092	402116	7248555	24249	166.0	44.3	157.4	368.3	22.3	15847	2.84	6473	2170	699	39.25	4.68	592	22.20	50857
MWGS3093	402104	7248518	51986	85.0	19.9	175.4	346.2	10.2	33300	1.48	13283	4613	1035	24.98	1.94	281	10.59	105175
MWGS3094	400380	7250073	8373	69.7	25.7	53.3	125.1	11.0	4589	2.27	2459	799	237	14.27	3.08	310	17.42	17089
MWGS3095	400386	7250080	9128	62.7	24.7	49.7	109.2	10.0	4848	2.50	2589	867	224	12.66	3.20	297	18.22	18245
MWGS3096	400386	7250082	6228	61.6	25.0	42.4	98.1	10.1	3319	2.27	1808	596	176	12.09	3.20	279	17.42	12679
MWGS3097	399170	7250210	5706	106.3	36.1	88.1	212.2	15.9	2208	2.73	2647	692	374	23.37	4.00	440	21.52	12578
MWGS3098	400787	7250934	1293	103.4	35.9	68.4	178.8	15.5	363	2.50	946	203	230	21.98	3.88	418	21.18	3905
MWGS3099	402335	7248682	11741	80.7	23.8	73.3	181.0	11.3	6723	1.82	3348	1096	366	18.88	2.63	324	14.01	24006
MWGS3100	402377	7248711	9159	137.1	45.9	94.3	255.9	20.5	4929	3.64	3183	929	425	29.47	5.48	601	29.61	19847
MWGS3101	399763	7249076	37927	143.1	42.5	151.8	337.9	20.5	24123	2.62	9260	3278	760	33.49	4.45	551	22.66	76657
MWGS3102	399764	7249077	38041	97.3	27.2	118.7	236.1	13.5	25377	1.82	8144	3099	577	22.90	2.86	376	14.35	76148
MWGS3103	399764	7249086	8223	99.6	32.4	79.5	191.7	14.5	4483	2.16	2851	853	346	21.98	3.31	407	16.97	17626
MWGS3104	399764	7249078	366	8.8	3.3	5.3	15.6	1.4	192	0.34	139	40	22	1.84	0.34	40	1.94	838
MWGS3105	399758	7249068	7400	56.8	19.2	51.3	116.0	8.6	3967	1.48	2303	730	234	12.78	2.06	236	11.16	15149
MWGS3106	399769	7249059	5308	119.2	39.1	82.1	215.9	18.0	2291	2.50	2297	627	340	25.09	4.34	499	21.98	11890
MWGS3107	399763	7249067	6759	56.1	16.2	51.3	118.7	7.8	3964	1.14	2041	657	226	12.78	1.71	213	8.88	14135
MWGS3108	399787	7248992	6774	53.9	22.2	46.1	102.6	8.8	3990	2.27	1990	639	207	11.16	2.97	253	17.31	14119
MWGS3109	399786	7248992	1879	43.5	15.6	27.3	68.9	6.9	919	1.02	704	204	106	8.75	1.83	197	9.56	4191
MWGS3110	399787	7248997	4644	65.2	24.7	49.4	119.3	10.4	2576	2.05	1594	478	206	14.16	2.97	305	17.42	10109
MWGS3111	399654	7249139	10121	84.7	23.3	82.4	208.3	11.6	5842	1.36	3442	1064	396	20.37	2.40	320	12.53	21633
MWGS3112	399655	7249121	9977	225.4	64.7	167.1	419.0	32.4	4383	3.41	4331	1184	656	48.57	6.74	858	33.36	22389
MWGS3113	399664	7249112	9728	170.7	53.1	127.4	336.1	25.7	4980	3.30	3753	1065	565	37.18	5.71	706	28.35	21584
MWGS3114	399574	7249289	20653	217.6	60.7	175.5	457.0	30.4	10426	3.18	7084	2204	864	49.38	6.17	812	30.52	43074
MWGS3115	399520	7249274	39695	404.1	84.8	520.4	1150.8	49.4	17376	2.50	16902	4723	2262	106.47	7.20	1237	28.58	84549
MWGS3116	399432	7249235	12971	496.9	132.4	333.6	886.7	69.2	5996	5.57	6179	1596	1204	107.04	12.91	1675	58.30	31724
MWGS3117	399685	7249757	56915	167.7	48.9	200.4	448.4	23.3	37791	3.53	13541	4943	1083	40.40	5.37	583	29.49	115824
MWGS3118	399692	7249761	53103	94.3	28.5	166.3	317.7	13.2	37147	2.73	12065	4511	882	25.55	3.65	352	20.95	108731
MWGS3119	399686	7249755	54329	131.4	38.3	201.0	403.0	17.9	35456	2.73	13514	4854	1065	33.95	4.23	466	24.37	110541
MWGS3120	399708	7249774	11084	78.3	25.3	115.9	240.8	11.0	5028	2.96	4745	1343	566	20.49	3.31	304	21.07	23589
MWGS3121	399533	7249822	105682	68.7	16.0	175.4	283.0	8.6	78061	0.80	19976	8261	1084	20.03	1.60	226	7.97	213873
MWGS3122	399532	7249819	20794	79.2	25.4	84.8	188.6	11.7	13665	1.71	5064	1861	431	18.53	2.86	316	15.49	42560
MWGS3123	399531	7249818	22104	81.7	25.2	88.0	193.6	12.0	14719	1.71	5329	1945	445	18.65	2.86	318	14.80	45298
MWGS3124	399536	7249821	12480	208.5	72.3	176.4	417.1	31.7	4913	4.89	5749	1597	777	45.35	8.11	873	45.32	27398
MWGS3125	400187	7250120	3080	37.1	11.9	31.5	73.2	5.6	1519	0.80	1134	336	142	8.06	1.26	141	7.06	6528

P +61 9481 0389

E info@kingfishermining.com.au

Sample ID	Easting	Northing	CeO ₂	Dy ₂ O ₃	Er ₂ O ₃	Eu ₂ O ₃	Gd ₂ O₃	Ho ₂ O ₃	La ₂ O ₃	Lu ₂ O ₃	Nd ₂ O ₃	Pr ₆ O ₁₁	Sm ₂ O ₃	Tb ₂ O ₃	Tm₂O₃	Y ₂ O ₃	Yb₂O₃	TREO
MWGS3126	399933	7249928	1697	17.0	6.6	14.5	30.3	2.9	912	0.68	577	178	62	3.34	0.80	79	5.47	3587
MWGS3127	400024	7249960	2260	36.3	12.9	25.7	61.7	5.5	1234	1.25	739	223	99	7.14	1.48	151	9.34	4867
MWGS3128	400019	7249954	1140	47.1	14.8	34.0	87.1	6.8	390	0.80	675	157	127	10.24	1.37	168	7.63	2866
MWGS3129	399525	7249792	11598	42.1	16.2	36.1	79.3	6.8	8278	1.48	2365	907	176	8.63	2.06	182	11.73	23710
MWGS3132	400474	7250073	1279	5.7	1.8	5.6	11.9	0.9	811	0.23	309	110	25	1.15	0.23	25	1.37	2588
MWGS3133	400238	7250110	62307	134.7	22.6	318.5	607.4	14.2	33473	1.25	19455	6202	1711	42.01	2.06	333	10.70	124635
MWGS3134	400235	7250113	37283	82.4	15.1	186.4	354.8	8.8	20627	1.02	11438	3656	989	24.86	1.48	214	7.74	74890
MWGS3135	400258	7250128	148430	346.1	32.6	894.7	1956.4	28.8	81689	0.91	46743	14726	4857	131.44	2.17	640	9.34	300487
MWGS3136	400247	7250107	50220	119.8	24.2	265.7	514.3	13.4	27149	1.48	15311	4936	1372	36.14	2.28	321	12.75	100301
MWGS3137	400234	7250109	72462	124.2	18.5	359.9	660.3	12.6	39814	0.91	22616	7175	1965	42.24	1.48	278	7.29	145537
MWGS3138	400229	7250105	58115	103.6	17.6	266.2	504.0	11.1	32746	0.91	17057	5566	1438	33.03	1.48	256	8.20	116125
MWGS3139	400296	7250129	2457	83.9	29.2	49.7	144.0	13.2	1148	2.16	1098	282	197	17.50	3.31	352	17.31	5894
MWGS3140	400220	7250100	1508	54.5	23.1	27.9	78.5	9.4	691	2.05	631	170	104	10.24	2.86	270	16.28	3598
MWGS3141	400214	7250095	3516	77.1	24.6	54.8	145.6	11.6	1609	1.36	1466	395	223	16.69	2.51	305	13.21	7861
MWGS3142	400117	7250103	1917	334.7	112.3	163.4	536.1	52.5	593	6.48	1693	325	537	67.10	11.42	1533	55.91	7937
MWGS3143	400114	7250104	15911	1036.4	287.2	709.2	1926.9	144.8	4293	11.71	11675	2511	2584	222.95	26.72	3596	120.47	45056
MWGS3144	399338	7250231	14007	284.1	84.6	225.8	564.0	40.4	6487	4.55	6078	1640	912	62.96	8.45	1025	41.90	31466
MWGS3145	399336	7250230	12974	180.2	53.7	156.7	370.7	25.7	6202	3.41	5061	1443	653	39.82	5.71	670	29.26	27869
MWGS3146	399317	7250228	15442	187.9	57.7	178.1	407.1	26.7	7265	3.87	5948	1713	762	42.13	6.05	709	32.57	32780
MWGS3149	399360	7250313	10944	70.5	20.9	77.8	166.4	10.1	5732	1.36	3612	1149	374	16.69	2.28	282	11.84	22471
MWGS3151	398783	7250242	1432	27.7	11.3	14.6	40.2	4.5	783	1.02	468	144	63	5.29	1.48	137	8.20	3141
MWGS3152	398693	7250230	48834	147.6	41.6	172.4	382.8	20.4	31808	2.16	11758	4323	946	35.45	4.23	553	20.38	99049
MWGS3153	398708	7250233	2244	47.4	18.9	28.0	73.5	8.0	1186	1.48	824	243	111	9.09	2.28	246	13.09	5056
MWGS3154	398677	7250232	24497	55.1	19.7	77.2	155.8	8.0	15920	2.16	5890	2174	436	13.12	2.40	244	15.37	49509
MWGS3155	398786	7250241	5796	46.4	13.7	51.2	122.4	6.4	2856	1.02	2222	664	256	11.39	1.60	179	8.43	12235
MWGS3156	398576	7250453	16257	119.7	39.8	138.3	315.9	17.8	7433	3.30	6586	1871	736	28.89	4.68	510	26.65	34088
MWGS3157	398573	7250450	1300	80.1	33.8	36.0	107.3	13.5	498	3.18	693	171	141	14.96	4.23	408	23.91	3529
MWGS3158	398572	7250453	13107	112.7	39.8	112.4	264.2	17.4	5970	3.18	5221	1508	585	26.01	4.68	499	25.51	27497
MWGS3159	398626	7250451	1414	14.7	6.1	13.1	28.9	2.4	667	0.57	515	153	58	3.11	0.69	68	4.33	2950
MWGS3160	398682	7250441	2722	40.7	13.6	34.7	81.7	6.0	1210	1.14	1150	322	156	8.75	1.60	172	8.88	5929
MWGS3161	398850	7250377	9018	67.5	25.8	55.9	135.9	10.9	5335	2.27	2650	873	272	14.50	3.20	305	18.33	18787
MWGS3162	398836	7250381	5607	83.6	34.0	54.9	144.9	13.7	2994	3.18	1945	589	241	16.92	4.34	402	25.05	12160
MWGS3163	398850	7250377	15176	166.2	49.9	137.9	357.4	24.1	8549	3.07	5013	1551	615	37.29	5.25	653	26.42	32363
MWGS3164	398848	7250377	39740	126.1	36.5	177.3	366.4	17.6	24607	2.73	10723	3713	928	31.65	4.23	487	23.91	80984
MWGS3166	398395	7250448	2752	82.9	24.5	54.1	152.6	11.9	1532	1.48	1339	361	219	17.61	2.63	338	13.32	6902
MWGS3167	398258	7250484	878	36.3	11.5	24.8	65.9	5.5	338	0.68	498	117	93	7.94	1.26	152	6.04	2235
MWGS3168	398243	7250527	50042	117.8	40.4	179.2	366.9	17.6	24627	3.18	14474	4801	1132	28.89	5.03	534	26.08	96395
MWGS3169	398240	7250526	12908	115.8	37.0	123.8	292.1	17.2	5618	2.73	5099	1451	625	26.93	4.11	496	21.86	26838
MWGS3170	398241	7250527	40018	106.7	36.6	150.5	321.6	15.6	19588	2.84	11782	3887	963	25.67	4.23	468	23.12	77392
MWGS3171	398258	7250526	87959	193.0	65.6	285.4	624.4	28.8	43505	3.87	25737	8541	1956	48.46	7.20	871	35.75	169862
MWGS3172	398235	7250525	20182	75.4	28.4	79.1	189.7	11.8	9918	2.16	5921	1961	505	16.80	3.43	361	18.67	39273
MWGS3173	398201	7250527	132066	217.6	35.8	619.3	1198.3	22.1	63394	1.93	41448	13288	3606	74.70	3.08	575	16.06	256564
MWGS3174	398191	7250528	14013	99.8	37.0	84.8	221.2	15.8	7104	2.73	4503	1415	492	21.52	4.45	471	23.00	28508
MWGS3175	398262	7250521	83332	137.5	43.9	248.0	488.5	20.2	40848	2.84	23710	8085	1727	36.03	5.03	599	24.71	159307
MWGS3176	398197	7250525	11865	75.6	25.0	83.4	192.6	11.6	5686	1.93	4015	1230	426	18.19	2.86	340	15.26	23988
MWGS3177	397918	7250548	98927	166.3	35.0	438.5	872.1	18.9	46799	2.27	30725	9772	2732	54.33	3.65	519	19.13	191085
MWGS3178	397920	7250550	19470	223.9	83.9	168.1	423.6	35.2	9687	6.71	6440	1966	799	45.46	10.05	1112	56.02	40527
MWGS3179	398780	7250060	5173	81.8	27.1	60.0	163.1	12.5	2352	2.05	1952	559	274	17.38	3.08	366	16.51	11059
MWGS3180	398740	7250041	4296	173.8	59.5	100.9	301.3	26.9	1641	3.53	2075	520	404	35.80	6.51	799	32.34	10476
MWGS3181	398857	7250090	22497	122.7	38.8	157.8	361.5	17.1	10609	3.30	7477	2322	821	30.62	4.57	507	26.76	44995
MWGS3182	398725	7250033	6819	98.6	33.0	77.0	192.3	14.4	3028	2.84	2495	732	336	20.60	4.00	434	21.41	14308
MWGS3183	398713	7250029	1543	68.6	26.5	34.6	98.1	11.2	609	2.16	649	171	133	12.78	3.31	354	18.67	3735

All sample information is parts per million (ppm). 100,000 ppm is equal to 10%.

E info@kingfishermining.com.au

Attachment 1: JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Rock chip samples were taken as individual rocks representing an outcropt to give an indication of possible grades and widths that can be expected from drilling. Individual rock samples can be biased towards higher grade mineralisation. Rock chip samples were typically between 1 and 2 kg. The entire sample received by the laboratory was crushed and pulverised to 85% passing 75 micron. A duplicate sample of between 0.1 and 0.2 kg was retained by the Company for some of samples reported.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	No new drilling results are included in this report.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No new drilling results are included in this report.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	No new drilling results are included in this report.
Sub-sampling techniques	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether 	 The entire sample received by the laboratory was crushed and pulverised to 85% passing 75 micron.

Criteria	JORC Code explanation	Commentary
and sample preparation	 sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Samples were analysed by Intertek Genalysis in Perth. The sample analysis uses a sodium peroxide fusion with an Inductively Coupled Plasma Mass Spectrometry and Inductively Coupled Plasma (ICP) Mass Spectrometry (MS) and Optical Emission Spectrometry (OES) finish.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Independent checks or field duplicates were not conducted for rock chips and are not considered necessary for that type of sample.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Rock chip sample locations were surveyed using a handheld GPS using the UTM coordinate system, with an accuracy of +/-5m.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	No new drilling results are included in this report.
Orientation of data in relation to	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key 	 Rock chip samples are collected to represent the outcrop. The nature of the surface outcrops of mineralisation appears to be similar to the mineralisation intersected in drilling, where the interpreted

Criteria	JORC Code explanation	Commentary
geological structure	mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	orientation indicates a true width for the mineralised zone of between 3m and 5m.
Sample security	The measures taken to ensure sample security.	 Samples were given individual samples numbers for tracking. The sample chain of custody was overseen by the Company's geologists. Samples were transported to the laboratory in Perth sealed bulka bags.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 The sampling techniques and analytical data are monitored by the Company's geologists. External audits of the data have not been completed.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The project area is located 80km northeast of the Gascoyne Junction and 230km east of Carnarvon. The project includes 12 granted Exploration Licences, E09/2242, E09/2349, E09/2319, E09/2320, E09/2481, E09/2494, E09/2495, E09/2653, E09/2654, E09/2655, E09/2660 and E09/2661. The tenements are held by Kingfisher Mining Ltd. The tenements lie within Native Title Determined Areas of the Wajarri Yamatji People and Gnulli People. All the tenements are in good standing with no known impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 No previous systematic exploration for carbonatite-associated mineralisation had been previously completed. Exploration for base metals at Kingfisher undertaken was by Pasminco Ltd in 1994, Mt Phillips Exploration Pty Ltd in 2006 and WCP Resources in 2007. Exploration for base metals at Mick Well was completed by Helix Resources Ltd in 1994, WA Exploration Services Pty Ltd in 1996, Mt Phillips Exploration Pty Ltd in 2006 and WCP Resources in 2007.
Geology	Deposit type, geological setting and style of mineralisation.	 The Company's tenements in the Gascoyne Mineral Field are prospective for rare earth mineralisation associated with carbonatite intrusions and associated fenitic alteration.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	No new drilling results are included in this report.

Criteria	JORC Code explanation	Commentary
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No new drilling results are included in this report and no data aggregation has been applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 No new drilling results are included in this report. True width is obscured by thin cover and appears to be similar to intervals intersected in drilling, 3 to 5m.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	A map showing relevant data has been included in the report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All rock chip samples of REE mineralisation have been reported. The reported sample batches also included some samples collected as part of ongoing evaluation of the geology of the area.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All of the relevant historical exploration data has been included in this report. All historical exploration information is available via WAMEX.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 On-going exploration in the area is a high priority for the Company. Exploration to include target-scale acquisition of geochemistry and geophysics data to define the extents of carbonatites, mapping and rock chip sampling as well as additional RC drilling.

