
5 August 2024

HIGH GRADE GOLD DISCOVERED AT LEINSTER SOUTH

- Rock chip and soil samples from the new Siberian Tiger prospect at Leinster South have returned significant high grade gold assays over a broad area.
- Best result of 20.2 g/t Au with a total of 16 samples grading > 1.0 g/t Au.
- The rock chips were collected during the first reconnaissance mapping trip at Leinster South, following up a 482ppb gold-in-soil anomaly recorded from historical wide-spaced 100m x 1,000m soil sampling.
- Metal Hawk has completed a tighter spaced 50m x 200m soil survey at the prospect and further geological mapping and sampling is underway.
- Siberian Tiger is located along the southeastern limb of the Agnew Greenstone belt and 15km from the Lawlers mining centre (past production 4.5M oz @ 5g/t Au)
- Very little previous exploration has been conducted in the vicinity of the new gold zone, with no historical rock chip assays or drilling results recorded from the prospect.
- Best rock chip assay results include:

> 24DR158: 20.2 g/t Au > 24DR152: 6.7 g/t Au > 24DR198: 6.3 g/t Au > 24DR203: 3.7 g/t Au > 24DR169: 3.4 g/t Au > 24DR168: 3.1 g/t Au > 24DR200: 3.1 g/t Au > 24DR165: 3.0 g/t Au > 24DR162: 2.9 g/t Au > 24DR197: 2.5 g/t Au > 24DR151: 2.4 g/t Au

Figure 1. Siberian Tiger prospect; rock chip gold results and soil samples. *Historical drillhole collars* (shown in blue squares) located in the field, but no data available.

Metal Hawk Limited (**ASX: MHK**, "**Metal Hawk**" or the "**Company**") is pleased to report results from its maiden reconnaissance exploration program at the Leinster South project, located 30km south of Leinster in the West Australian goldfields. The recently granted project tenements cover over 200km² and present a significant new gold discovery opportunity for the Company. Initial work at the Siberian Tiger prospect, located in the northern portion of tenement E 36/1068, has returned high grade gold in rock chip samples.

Metal Hawk's Managing Director Will Belbin commented: "We could not have wished for a better start to exploration at Leinster South and we are thrilled with these outstanding results of up to 20g/t gold at Siberian Tiger. It is rare these days to find new discoveries of outcropping gold in the northeast goldfields, let alone only 15km from a mature, world class mining camp such as Agnew-Lawlers."

"It is remarkable that historically there has been no significant gold exploration or drilling recorded at this prospect, especially considering the extensive amount of work carried out on the mining lease immediately to the north of the tenement. I believe we may be on the verge on something special here."

SIBERIAN TIGER PROSPECT

Following detailed data review and desktop work, field activities at Leinster South commenced in June 2024. A historical 482ppb gold assay from a wide-spaced (100m x 1,000m) geochemical soil survey was recorded in the northern part of tenement E36/1068 and presented Metal Hawk geologists an exciting anomaly worthy of further investigation. A number of other low order gold anomalies have been identified from the 2004 soil survey.

The Company's initial mapping and rock chip sampling results from Leinster South have identified a large high-grade gold target at the Siberian Tiger prospect, located in the northern portion of the western tenement E36/1068. Outstanding gold assays (up to 20.2g/t) have been returned from numerous rock chip samples over a strike length of nearly 1.5km (Figure 1 and Table 1). A total of 141 rock chip samples were taken over a selection of areas of interest, with various samples of quartz veining, pegmatite, amphibolite, gossan and weathered ultramafic rock collected. Out of the 52 rock samples of quartz veining taken, 27 returned anomalous gold (>0.1g/t Au) and 16 returned gold values over 1g/t Au.

Figure 2. Rockchip sample from Siberian Tiger grading 20.1 g/t Au

In order to verify the historical 482ppb gold-in-soil anomaly, Metal Hawk completed an orientation line of 11 closely spaced (10m) soil samples centred across the target historical gold anomaly. New soil geochemical results replicated this anomaly with a result of 430ppb Au (see Table 2). Following assessment of these orientation soils, Metal Hawk has completed a tighter spaced (50m x 200m and some 25m x 100m) and more comprehensive soil grid with 224 soil samples collected over the main prospect area.

There are no digital records of previous drilling at Siberian Tiger, however, the Company has located a number of historic drillholes to the west of the southern rockchip samples (shown in Figure 1). The details of these drillholes are unknown but are located on the western fringe of what appears to be the mineralised gold trend.

GEOLOGICAL SETTING

The Siberian Tiger prospect is situated near the tip of the southeastern limb of the Agnew greenstone belt which is host to several world-class gold deposits (Figure 3). The prospect is less than 10km south of the Fairyland gold mine $(+140k \text{ oz } @ 4g/t \text{ Au})^1$ and eastern Lawlers group of deposits. Past production at Agnew - Lawlers is > 5 million ounces @ 5 g/t Au².

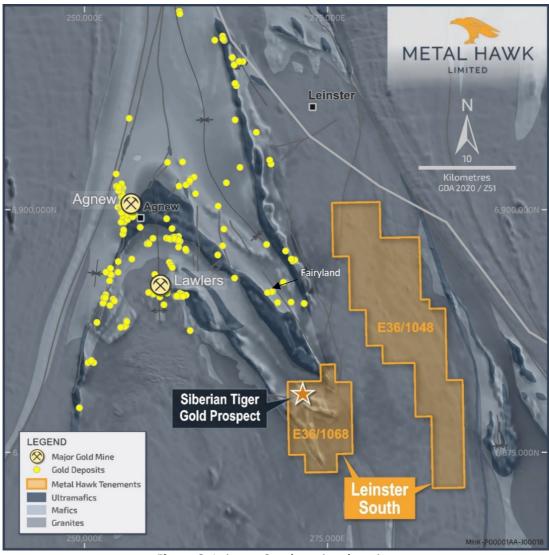


Figure 3. Leinster South project location

¹ minedex.dmirs.wa.gov.au

² https://www.goldfields.com

The mapped geology at Siberian Tiger includes a series of extensive southeast trending mafic rocks, outcropping and sub-cropping sheeted and brecciated/boudinaged quartz veins with abundant iron oxides present. The gold mineralised rock chip samples collected by Metal Hawk show textural similarities to the gold mineralisation recorded at several of the nearby high grade Lawlers gold deposits. There is also a comparable metal association of Au, Bi, W and Zn. This is interpreted to reflect an affinity with intrusion-related gold systems in the region.

FORWARD PLAN

Further detailed geological mapping along with additional rockchip and soil sampling is in progress at Siberian Tiger and further along strike. Results from this work will be used to plan the next program of regional geochemical sampling and ultimately help define targets for drilling.

Figure 4. Looking along strike of Siberian Tiger

This announcement has been authorised for release by Mr Will Belbin, Managing Director, on behalf of the Board of Metal Hawk Limited.

For further information regarding Metal Hawk Limited please visit our website at www.metalhawk.au or contact:

Will Belbin Managing Director Metal Hawk Limited +61 478 198 665

admin@metalhawk.au

Media & Investor Relations Luke Forrestal GRA Partners +61 411 479 144

luke.forrestal@grapartners.com.au

Competent Person statement

The information in this announcement that relates to Exploration Targets and Exploration Results is based on information compiled and reviewed by Mr William Belbin, a "Competent Person" who is a Member of the Australian Institute Geoscientists (AIG) and is Managing Director at Metal Hawk Limited. Mr Belbin is a full-time employee of the Company and hold shares and options in the Company. Mr Belbin has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Belbin consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Metal Hawk Limited's planned exploration program(s) and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward looking statements.

Table 1. Leinster South rock chip results

SITENO	EAST	NORTH	RL	PROSPECT	rock type	Au (g/t)
24DR129	292462	6885376	526	LN010	felsic	NSR
24DR130	292424	6885339	527	LN010	pegmatite	NSR
24DR131	292949	6885362	524	LN010	pegmatite	NSR
24DR132	275048	6878973	487	LN003	quartz vein	0.01
24DR133	274505	6879059	498	LN003	gossan	0.03
24DR134	274519	6879069	499	LN003	ultramafic	0.01
24DR135	274485	6880298	489	Regional	quartz vein	0.57
24DR136	274695	6880998	496	Regional	pegmatite	NSR
24DR137	274726	6881238	503	Regional	pegmatite	NSR
24DR138	274584	6881585	507	Regional	pegmatite	NSR
24DR139	275100	6881718	501	Regional	pegmatite	0.01
24DR140	275094	6881752	505	Regional	gossan	NSR
24DR141	275087	6881765	505	Regional	gossan	NSR
24DR142	275428	6881594	498	Regional	pegmatite	0.01
24DR143	275357	6881625	499	Regional	ultramafic	0.01
24DR144	274771	6881996	511	Regional	pegmatite	NSR
24DR145	274611	6882222	517	Regional	quartz vein	NSR
24DR146	274606	6882238	517	Regional	quartz vein	NSR
24DR147	272506	6881040	505	LN019	quartz vein	0.14
24DR149	271908	6881996	508	Siberian Tiger	quartz vein	0.01
24DR150	271907	6882002	508	Siberian Tiger	laterite	0.01
24DR151	271908	6882001	508	Siberian Tiger	quartz vein	2.45
24DR152	271906	6881995	508	Siberian Tiger	quartz vein	6.68
24DR153	271897	6881997	505	Siberian Tiger	quartz veni	0.46
24DR154	271925	6882032	507	Siberian Tiger	·	0.18
24DR155	271817	6882288	517	Regional	quartz vein	NSR
24DR156	271824	6882260	514	Regional	shear	0.04
24DR157	271931	6881994	507	Siberian Tiger	quartz vein	0.34
24DR158	271929	6881975	509	Siberian Tiger	quartz vein	20.20
24DR159	271956	6881979	509	Siberian Tiger	quartz vein	0.76
24DR160	271964	6881969	509	Siberian Tiger	quartz vein	0.14
24DR161	271990	6881966	508	Siberian Tiger	quartz vein	0.30
24DR161 24DR162	271990	6881937	509	Siberian Tiger	quartz vein	2.85
24DR163	272005	6881937	509	Siberian Tiger	quartz vein	0.35
24DR164	272005	6881923	509	Siberian Tiger	quartz vein	0.03
24DR165	272015	6881876	508	Siberian Tiger	quartz vein	2.96
24DR166	272028	6881866	508	Siberian Tiger	quartz vein	1.07
24DR167	272028	6881915	509	Siberian Tiger	quartz vein	1.88
24DR167 24DR168	271931	6881916	510	Siberian Tiger	quartz vein	3.13
24DR169	271966	6881933	510	Siberian Tiger	quartz vein	3.41
24DR109 24DR170	271300	6881792	503	Siberian Tiger	quartz vein	0.04
24DR170 24DR171	272121	6881801	503	Siberian Tiger	quartz vein	0.04
24DR171 24DR172	272128	6881810	503	Siberian Tiger	quartz vein	0.04
24DR172 24DR173	272107	6881796	501	Siberian Tiger	oxide	0.04
24DR173 24DR174	272182	6881794	501	Siberian Tiger	oxide	0.04
		6881790				0.04
24DR175	272181		501	Siberian Tiger	quartz vein	
24DR176	272179	6881795	501	Siberian Tiger	oxide	0.54
24DR177	272181	6881796	501	Siberian Tiger	oxide	0.29
24DR178 24DR179	271167	6881255	488	LN032	pegmatite	0.01
//ITIR'T /U	271154	6881260	488	LN032	pegmatite	0.01

				Harlands As I was	AUX ANNO	JUNCEMEN
24DR181	271164	6880933	482	LN032	pegmatite	NSR
24DR182	271286	6881013	487	LN032	pegmatite	NSR
24DR183	271458	6880610	480	LN032	pegmatite	NSR
24DR184	271239	6880413	484	LN032	pegmatite	0.01
24DR185	271184	6880363	489	LN032	pegmatite	NSR
24DR186	271220	6880427	486	LN032	pegmatite	NSR
24DR187	271338	6880480	476	LN032	pegmatite	NSR
24DR188	271322	6880518	477	LN032	pegmatite	NSR
24DR189	271365	6880489	477	LN032	pegmatite	NSR
24DR190	271376	6880484	477	LN032	pegmatite	NSR
24DR191	271479	6880295	478	LN032	pegmatite	NSR
24DR192	271398	6880322	475	LN032	pegmatite	NSR
24DR193	271357	6880216	476	LN032	pegmatite	NSR
24DR194	271975	6880850	495	Regional	granite	NSR
24DR195	271989	6881600	507	LN019	quartz vein	0.08
24DR196	272108	6881374	492	LN019	quartz vein	0.01
24DR197	272106	6881389	492	LN019	quartz vein	2.53
24DR198	272090	6881429	497	LN019	quartz vein	6.26
24DR199	272086	6881440	497	LN019	quartz vein	1.60
24DR200	272085	6881440	497	LN019	quartz vein	3.15
24DR200	272085	6881442	497	LN019	mafic	0.01
24DR201	272080	6881337	498	LN019	quartz vein	0.44
24DR202	272132	6881916	503			3.75
24DR203 24DR204	272136	6881978	505	Siberian Tiger Siberian Tiger	quartz vein	0.01
			500		pegmatite	
24DR205	272282	6881653		Siberian Tiger	quartz vein	2.01
24DR206	272381	6881058	497 496	LN019	quartz vein	0.04
24DR207	272384 272510	6881032	496	LN019	oxide	0.02
24DR208		6880817		LN019	quartz vein	1.44
24DR209	272514	6880835	499	LN019	mafic	0.01
24DR210	272626	6880737	498	LN019	mafic	NSR 0.01
24DR211	272632	6880735	501	LN019	mafic	0.01
24DR212	272630	6880738	501	LN019	oxide 	NSR
24DR213	272624	6880733	498	LN019	quartz vein	0.03
24DR214	272626	6880730	497	LN019	quartz vein	0.05
24DR215	272651	6880699	495	LN019	quartz vein	0.18
24DR216	272650	6880703	498	LN019	quartz vein	0.03
24DR217	272650	6880705	498	LN019	quartz vein	0.03
24DR218	272710	6880780	509	LN019	quartz vein	NSR
24DR219	272709	6880783	509	LN019	quartz vein	NSR
24DR220	272829	6880836	504	LN019	mafic	NSR
24DR221	272825	6880839	504	LN019	mafic	NSR
24DR222	272825	6880827	504	LN019	mafic	NSR
24DR223	272841	6880374	489	LN019	quartz vein	0.01
24DR224	273283	6879835	497	Regional	quartz vein	NSR
24DR225	273391	6879764	490	Regional	shear	NSR
24DR226	273409	6879746	490	Regional	quartz vein	NSR
24DR227	273331	6879816	493	Regional	quartz vein	NSR
24DR228	273920	6879624	483	Regional	ultramafic	NSR
24DR229	272260	6879731	481	LN032	pegmatite	NSR
24DR230	271875	6879942	477	LN032	pegmatite	NSR
24DR231	271942	6880224	483	LN032	pegmatite	NSR
24DR232	271743	6880235	483	LN032	pegmatite	NSR
24DR233	274259	6879139	491	LN003	ultramafic	NSR
24DR234	274259	6879134	491	LN003	quartz vein	NSR

24DR235	274260	6879160	491	LN003	ultramafic	NSR
24DR236	274109	6879127	488	LN003	ultramafic	0.01
24DR237	274106	6879172	490	LN003	ultramafic	0.05
24DR238	274107	6879182	490	LN003	ultramafic	0.01
24DR239	274107	6879189	490	LN003	ultramafic	0.01
24DR240	274104	6879199	490	LN003	ultramafic	0.02
24DR241	274104	6879203	490	LN003	ultramafic	0.01
24DR242	274121	6879021	489	LN003	ultramafic	0.01
24DR243	274120	6879027	489	LN003	quartz vein	NSR
24DR244	273958	6879126	484	LN003	ultramafic	NSR
24DR245	273957	6879119	484	LN003	ultramafic	NSR
24DR246	273957	6879112	484	LN003	ultramafic	NSR
24DR247	273958	6879098	483	LN003	ultramafic	NSR
24DR248	273957	6879085	483	LN003	ultramafic	NSR
24DR249	273957	6879078	483	LN003	ultramafic	NSR
24DR250	273959	6879054	484	LN003	ultramafic	NSR
24DR251	273958	6879046	484	LN003	ultramafic	0.01
24DR252	273777	6879206	479	LN003	ultramafic	0.01
24DR253	273777	6879193	479	LN003	ultramafic	0.02
24DR254	273778	6879185	479	LN003	ultramafic	0.01
24DR255	273781	6879173	479	LN003	ultramafic	NSR
24DR256	273780	6879161	480	LN003	ultramafic	0.01
24DR257	273775	6879150	480	LN003	ultramafic	0.01
24DR258	273784	6879103	481	LN003	ultramafic	0.08
24DR259	273783	6879095	481	LN003	ultramafic	0.03
24DR260	274515	6879124	496	LN003	ultramafic	0.01
24DR261	274515	6879115	496	LN003	ultramafic	0.01
24DR262	274516	6879101	498	LN003	ultramafic	0.01
24DR263	274515	6879089	498	LN003	ultramafic	0.01
24DR264	274515	6879076	498	LN003	ultramafic	0.02
24DR265	274819	6878993	494	LN003	ultramafic	NSR
24DR266	274819	6878974	496	LN003	ultramafic	0.01
24DR267	274821	6878958	496	LN003	ultramafic	NSR
24DR268	274820	6878945	496	LN003	ultramafic	NSR
24DR269	274821	6878909	496	LN003	ultramafic	NSR
24DR270	274355	6874622	465	Regional	pegmatite	NSR
24DR271	274347	6874659	465	Regional	pegmatite	NSR
24DR272	274349	6874638	465	Regional	pegmatite	NSR
24DR273	274296	6874772	465	Regional	granite	NSR

Notes to Table 1:

- Grid coordinates GDA2020: zone51, locations determined by handheld GPS.
- higher grade results reported > 1.0g/t Au shown in bold.
- Au reported is average where repeat assay available.
- NSR = no significant result.

Table 2. Leinster South soil geochemical results – July 2024

SAMPLENO	PROSPECT	East	North	REGRL	Au (ppb)	Au (g/t)
24DR148	Siberian Tiger	271904	6882004	508	220	0.22
24LS0001	Siberian Tiger	271979	6882002	509	2	0.002
24LS0002	Siberian Tiger	271971	6882004	509	3	0.003
24LS0003	Siberian Tiger	271961	6882003	509	2	0.002
24LS0004	Siberian Tiger	271951	6882005	507	4	0.004
24LS0005	Siberian Tiger	271941	6882004	507	11	0.011
24LS0006	Siberian Tiger	271932	6882004	507	9	0.009
24LS0007	Siberian Tiger	271921	6882004	508	26	0.026
24LS0008	Siberian Tiger	271911	6882004	508	38	0.038
24LS0009	Siberian Tiger	271903	6882003	508	430	0.430
24LS0010	Siberian Tiger	271895	6882004	505	138	0.138
24LS0011	Siberian Tiger	271885	6882005	505	21	0.021
24LS0012	Siberian Tiger	271875	6882004	505	27	0.027
24LS0013	Siberian Tiger	271862	6882004	505	5	0.005
24LS0014	Siberian Tiger	271852	6882004	505	3	0.003
24LS0015	Siberian Tiger	271974	6881927	510	105	0.105
24LS0016	Siberian Tiger	272063	6881866	505	74	0.074
24LS0017	Siberian Tiger	272119	6881789	503	32	0.032
24LS0018	Siberian Tiger	272089	6881429	497	68	0.068
24LS0019	Siberian Tiger	272182	6881795	501	43	0.043
24LS0020	Siberian Tiger	272189	6881715	499	5	0.005
24LS0021	Siberian Tiger	272281	6881655	500	41	0.041
24LS0022	LN019	272381	6881058	497	8	0.008
24LS0023	LN019	272510	6880818	499	32	0.032
24LS0024	LN019	272626	6880736	498	60	0.06
24LS0025	LN019	272826	6880842	504	21	0.021

Notes to Table 2:

- Grid coordinates GDA2020: zone51, locations determined by handheld GPS.
- NSR = no significant result.

2012 JORC Table 1

SECTION 1: SAMPLING TECHNIQUES & DATA (SURFACE GEOCHEMISTRY)

	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 Surface rockchip and soil sampling at Leinster South was undertaken as part of reconnaissance mapping and prospecting of new pegmatite and gold targets. Some of these targets were identified from satellite imagery, interpretation of GSWA geological maps and from historic soil geochemical anomalies. Sampling was undertaken using standard industry practices. The rockchip sampling program was reconnaissance in nature, rockchips were taken at the discretion of a geologist according to visual inspection of suitably mineralised and/or unmineralised rock units. The geologist has attempted to collect a representative sample of the material presented, so there is no hand picking of specific pieces of broken rock or minerals. Rockchip sampling consisted of outcropping/subcropping quartz veins and/or ferruginous mafic saprock lithologies. Samples were also collected from pegmatite and aplite lithologies. Samples weighed between 1 to 3kg. A total of 141 samples were collected. Soil samples were for orientation purposes and collected on 10m spacings across the largest of the historic soil; anomalies, along with selective samples along strike. A total of 26 samples were collected. Sample weights of soil samples 200 grams at <2mm, collected approximately 5cm to 20cm below surface. Sample coordinates are in UTM grid (GDA2020 z51) and have been measured with a hand-held GPS with an accuracy of +/- 4m. All MHK samples were submitted for gold and multi-element analysis by Intertek Laboratories Perth WA using 4 acid digest with ICPMS finish, plus fire assay for gold. Historical soil samples were collected on a 100m x 1,000m grid (GDA94z51). Sample positions have been converted to GDA2020z51. Historical soil samples were analysed for gold via Fire Assay and multielement analysis via a mixed acid digest and ICP-MS determination. No drillhole data is being reported, only drillhole collars positions have been recorded. Sampling techniques for his
Drilling techniques	Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Details of historical drilling unknown. No results are reported.

Drill sample recovery

Method of recording and assessing core and chip sample recoveries and results assessed.

Measures taken to maximise sample recovery and ensure representative nature of the samples.

Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.

Details of historical drilling unknown. No results reported.

Logging

Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.

Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.

The total length and percentage of the relevant intersections logged.

- Logging of rock chips colour and lithology was carried out on a routine basis. Data is in a digital form. A photograph has been collected for each rockchip sample.
- No logging data for historical drilling, collar positions only.

Sub-sampling techniques and sample preparation

If core, whether cut or sawn and whether quarter, half or all core taken.

If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.

For all sample types, the nature, quality and appropriateness of the sample preparation technique.

Quality control procedures adopted for all subsampling stages to maximise representivity of samples.

Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.

Whether sample sizes are appropriate to the grain size of the material being sampled.

- Rockchip samples are split using a small rock hammer.
- In some cases where rock had weathered to gravelly material, multiple pieces of representative rock were required to create a composite sample. No selective hand picking of minerals took place.
- Rockchip samples weighed approximately 1-3 kg, which is sufficient for the grain size of the material being analysed and the reconnaissance stage of exploration being carried out. No selective hand picking took place.
- In some cases, multiple pieces of representative rock were required to create a composite sample. This approach is used in regional programs to establish the fertility of a range of veins at one locality. This is especially important given the size of the area and number of veins systems being covered in this program. The objective of the follow-up sampling is to collect individual veins wherever possible at any given locality.
- Rockchip samples were delivered to Intertek Genalysis prep lab in Kalgoorlie. Sample preparation by dry pulverization to 90% passing 80 microns.
- Soil samples were not sieved at site due to moist soil conditions at the time and weighed approximately 200g. The sample size is standard practice in the WA Goldfields to ensure representivity.
- No company standards were used during this reconnaissance program, however, the laboratory inserted standards at regular intervals.
- No other field-based quality control procedures were considered necessary for this reconnaissance style sampling program. To provide a degree of quality control once the

	A A	A SAME SAME AND A SAME
THE WAST	A NORTH A	ASX ANNOUNCEMENT ASX: MHK

rockchips were found to be anomalous, the laboratory re-tested every tenth sample.

- Once samples arrived in Kalgoorlie, further work including routine laboratory duplicates and QC was undertaken at the laboratory.
- At the laboratory where the entire sample was dried, crushed, then pulverised to 85% passing 75 microns or better using an LM2 or LM5 mill.
- Historical soil samples were sieved to #80 mesh and submitted to Amdel Laboratories Wangara for a multi-element suite. Gold and PGEs were analysed by fire assay, while the other elements were analysed via a mixed acid digest and ICP-MS determination.

Quality of assay data and laboratory tests

The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.

For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.

Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.

- Rockchip and soil geochemical analysis was undertaken by Intertek Genalysis in Perth, using routine multi-element analysis by 4-acid digest and ICP-MS.
- This near-full digest is considered sufficient for this stage of exploration and the weathered nature of the samples.
- Gold analysis was undertaken with 25-gram Fire Assay. The detection limit for gold via fire assay is 5ppb (0.005ppm).
- 1 in 10 rockchip pulps were re-assayed via fire assay method for gold. Results show a high degree of reproducibility.
- In addition, the laboratory re-assayed all 26 of the soil pulps using an aqua regia digest to assess the amenability of this method for future gold exploration. Most elements, including gold, were found to faithfully reproduce the 4 acid and fire assays to within 10%.
- The detection limit for gold via aqua regia is 1ppb (0.001ppm).
- No geophysical assay tools were used.
- Laboratory QA/QC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of the inhouse procedures. QC results (blanks, duplicates, standards) were in line with commercial procedures, reproducibility and accuracy.
- No assay data reported for the historical drilling, only collar details.

Verification of sampling and assaying

The verification of significant intersections by either independent or alternative company personnel.

The use of twinned holes.

Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.

Discuss any adjustment to assay data.

- Data storage as PDF/XL files on company PC in Perth office, which is then up-loaded to the Company's access database.
- Data is validated at several stages to ensure consistency.
- No data was adjusted.

Loca	tion	of
data	poin	ıts

Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.

Specification of the grid system used.

Quality and adequacy of topographic control.

- All rock chip and soil samples were surveyed using a handheld Garmin GPS, accurate to within 3-5 m.
- MHK rockchip and soil sample locations are shown as per Tables 1 & 2 in the announcement.
- Grid MGA2020 Zone 51.
- Topography is moderately uneven and GPS has poor vertical controls, so the elevation of samples is derived from a digital terrain model.
- Historical drillhole collars were collected by MHK via handheld GPS. Collar positions are as follows:

Hole id	Easting	Northing
unknown_1	271998	6881544
unknown_2	272103	6881431
unknown_3	272120	6881436
unknown_4	272118	6881378
unknown_5	271991	6881556
unknown_6	271947	6881611
unknown_7	271915	6881678

Depths of historical drillholes are unknown.

Data spacing and distribution

Data spacing for reporting of Exploration Results.

Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.

Whether sample compositing has been applied.

- Rockchips were collected at variable sample spacings at the discretion of the geologist to adequately sample the area of interest.
- Soil samples were collected on 10m spacings across the largest of the historic soil anomalies, along with selective samples along strike. The main objective at this stage was to ascertain the dynamic range of the gold-in-soils assays, useful pathfinder elements and sample spacing.
- Historical soils samples collected on a 100m x 1,000m grid.
- Historical drillhole locations seem to be ad-hoc.
 No drilling or sample information is known.

Orientation of data in relation to geological structure

Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.

If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.

- Rockchip sampling was of reconnaissance nature and designed to establish the gold fertility of the various veins and textures presented at the site. This is reflected in the range of assays presented herein barren quartz through to strongly mineralised quartz with abundant ex-sulphide.
- The soil sample line was orientated across the strike of the known geological grain and interpreted zone of interest from the historic anomaly.
- The details, results and purpose of the historical drillholes is unknown.

Sample security

The measures taken to ensure sample security.

Samples were collected on site under supervision of the responsible geologist. The work site is on a pastoral station. Visitors need permission to visit site. Once collected samples were bagged and transported to Kalgoorlie for analysis. Dispatch and consignment notes were delivered and checked for discrepancies.

Audits or reviews

The results of any audits or reviews of sampling techniques and data.

No Audits have been commissioned.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The work programs were conducted on the exploration licenses 36/1048, 36/1068. The tenements are registered to Metal Hawk Limited, who is 100% owner. Metal Hawk were granted these tenements on 13/3/2024 and 25/1/2024 respectively.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	The project tenements are in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous exploration has been carried out in the area by a number of explorers. The majority of early documented historical work was carried out for nickel sulphide exploration, given the extension of magnetic highs from the northwest (Agnew Greenstone Belt). No historical drilling data has been recorded at the Siberian Tiger prospect. Between 1997 to 2001 the tenure was owned by WMC (Western Mining Corporation). Work undertaken included soil and rockchip sampling, but there is no record of any drilling. Heron Resources Ltd (Heron) held part of the ground from 2004 to 2009. In 2004, Heron completed an extensive wide-spaced (1000x100m) soil survey which covered the Siberian Tiger prospect. While they reported an anomaly of 87ppb Au along strike to the southeast of Siberian Tiger, the stronger anomaly that is the central to the prospect (482ppb Au) received no coverage. More recently the tenement area was owned by Jindalee Resources Ltd Limited (from 2018 to 2023). The ground was subject to a JV with Auroch Minerals Ltd. No reported fieldwork took place at the Siberian Tiger prospect.
Geology	Deposit type, geological setting and style of mineralisation.	 The Leinster South Project lies at the southern tip of the Agnew Greenstone Belt in central-west WA. The geological setting is of Archaean age with common host rocks related to komatiite-hosted nickel sulphide mineralisation as found throughout the Yilgarn Craton of Western Australia. The region is also made up of mafic and felsic volcanics and intrusions, siliciclastic metasediments of upper greenschist to lower amphibolite facies and post-orogenic S-type muscovite-bearing granites. The main belt of exposed rocks in EL36/1068 is composed of interlayered dolerite, gabbro, meta-basalt, ortho-amphibolite, pyroxenite, and schistose meta-mafic and meta-sedimentary rocks. There are strong domainal foliations at

		推到外的原理。
		the interface between brittle and ductile lithologies, and locally the development of quartz veins systems parallel and en echelon to the fabric. Veins range from undeformed sheeted to complex breccia and boudinaged with host rock and iron oxides. Rarely are primary sulphides preserved, but pyrite, chalcopyrite and sphalerite have been recorded during the mapping and sampling program by Metal Hawk. • The package has been intruded by several granites with differing affinities, ranging from leucogranite to granodiorite. Some bodies are highly foliated and locally migmatised, while others are equigranular and essentially undeformed. • The Leinster South Project principally has potential for komatiite-associated nickel and structurally controlled intrusion-related gold. • Significant gold deposits are currently in production at Agnew – Lawlers (15 to 25km to NW) and Thunderbox, 25km to the east of E36/1068. • The closest gold deposit and former mine is Fairyland (148,000 oz pre-mining resource 1997), 10km to north. The Company does not know the historical production figures for Fairyland.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth	Historical drillhole collar positions recorded only by GPS. Details of depth, geology and assay data unknown.
Data aggregation methods	• hole length. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 MHK soils: Average of original and any repeat gold assays used. Only fire assay gold reported here. Rockchips: Average of original and any repeat gold assays used. No top-cut applied. No metal equivalents have been used. Drillholes: no data except for collar positions
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	As the geochemical results reported are from surface, any potential depths of mineralisation or orientations can only be inferred from

		在 以 是,他们有一个人,一个人的人,但是一个人的人,但是一个人的人的人们的
widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole	geological observations on the surface and hence are speculative in nature.
	lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures in text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All Metal Hawk rock chip sample results are presented in Table 1 and as a thematic map in the report. All soil sample results are presented in as a thematic map in the report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Everything meaningful and material is disclosed in the body of the report.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	 Metal Hawk has recently undertaken a follow-up soil sampling program over part of E36/1068, encompassing the Siberian Tiger prospect and along strike to the southeast. Most is at a spacing of 200x50m, with 100mx25m infill over the immediate area of Siberian Tiger. The results are expected within 2-3 weeks. The company is also planning follow up rockchip sampling at Siberian Tiger and further reconnaissance rockchip and soil sampling across E36/1068 in the coming fortnight.